Deep Learning for Imaging Cherenkov Telescopes data analysis
GammaLearn is a project to develop deep learning solutions for Imaging Atmospheric Cherenkov Telescopes data analysis and in particular for the Cherenkov Telescope Array Observatory (CTAO) currently under construction. Its first application is the event reconstruction (to retrieve events physical properties such as type, energy and incoming direction) based on the images or videos recorded by Cherenkov telescopes. To ease developments and experiments running, we have developed a complete framework to train and deploy deep learning networks.
@article{franccois2025clean,title={To clean or not to clean? Influence of pixel removal on event reconstruction using deep learning in CTAO},author={Fran{\c{c}}ois, Tom and Talpaert, Justine and Vuillaume, Thomas},journal={arXiv preprint arXiv:2502.07643},year={2025},}
Stereograph: Stereoscopic event reconstruction using graph neural networks applied to CTAO
Hana Ali Messaoud, Thomas Vuillaume, and Tom François
@article{messaoud2025stereograph,title={Stereograph: Stereoscopic event reconstruction using graph neural networks applied to CTAO},author={Messaoud, Hana Ali and Vuillaume, Thomas and Fran{\c{c}}ois, Tom},journal={arXiv preprint arXiv:2502.07421},year={2025},}
2024
Deep Learning and IACT: Bridging the gap between Monte-Carlo simulations and LST-1 data using domain adaptation
Michael Dellaiera, Cyann Plard, Thomas Vuillaume, and 2 more authors
@article{dellaiera2024deep,title={Deep Learning and IACT: Bridging the gap between Monte-Carlo simulations and LST-1 data using domain adaptation},author={Dellaiera, Michael and Plard, Cyann and Vuillaume, Thomas and Benoit, Alexandre and Caroff, Sami},journal={arXiv preprint arXiv:2403.13633},year={2024},}
Unsupervised Domain Adaptation for Multitask Image Analysis in Realistic Context with Extreme Label Shift; Application to the Ctao First Large Sized Telescope
Michael Dell’aiera, Thomas Vuillaume, and Alexandre Benoit
Application to the Ctao First Large Sized Telescope, 2024
@article{dell2024unsupervised,title={Unsupervised Domain Adaptation for Multitask Image Analysis in Realistic Context with Extreme Label Shift; Application to the Ctao First Large Sized Telescope},author={Dell'aiera, Michael and Vuillaume, Thomas and Benoit, Alexandre},journal={Application to the Ctao First Large Sized Telescope},year={2024},}
Deep-learning Analysis of Cherenkov Telescope Array Images
Mikaël JACQUEMONT, Thomas VUILLAUME, Alexandre BENOIT, and 2 more authors
Inversion and Data Assimilation in Remote Sensing: Estimation of Geophysical Parameters, 2024
2023
Deep unsupervised domain adaptation applied to the cherenkov telescope array large-sized telescope
Michaël Dell’Aiera, Thomas Vuillaume, Mikaël Jacquemont, and 1 more author
In Proceedings of the 20th international conference on content-based multimedia indexing, 2023
@inproceedings{dell2023deep,title={Deep unsupervised domain adaptation applied to the cherenkov telescope array large-sized telescope},author={Dell'Aiera, Micha{\"e}l and Vuillaume, Thomas and Jacquemont, Mika{\"e}l and Benoit, Alexandre},booktitle={Proceedings of the 20th international conference on content-based multimedia indexing},pages={133--139},year={2023},}
Analyse d’images Cherenkov monotélescope par apprentissage profond
Mikaël JACQUEMONT, Thomas VUILLAUME, Alexandre BENOIT, and 2 more authors
Inversion et assimilation de données de télédétection: Estimation des paramètres géophysiques, 2023
Chapitre 9-Analyse d’images Cherenkov monotélescope par apprentissage profond
Mikaël JACQUEMONT, Thomas VUILLAUME, Alexandre BENOIT, and 2 more authors
2023
2022
Deep-learning-driven event reconstruction applied to simulated data from a single Large-Sized Telescope of CTA
H Abe, A Aguasca, I Agudo, and 8 more authors
In Proceedings of Science, 2022
2021
Multi-task architecture with attention for imaging atmospheric cherenkov telescope data analysis
Mikaël Jacquemont, Thomas Vuillaume, Alexandre Benoit, and 2 more authors
In VISAPP 2021, 2021
Deep learning for astrophysics, understanding the impact of attention on variability induced by parameter initialization
Mikaël Jacquemont, Thomas Vuillaume, Alexandre Benoit, and 2 more authors
In International Conference on Pattern Recognition, 2021
First full-event reconstruction from imaging atmospheric cherenkov telescope real data with deep learning
Mikaël Jacquemont, Thomas Vuillaume, Alexandre Benoit, and 3 more authors
In 2021 International Conference on Content-Based Multimedia Indexing (CBMI), 2021
@inproceedings{jacquemont2019indexed,title={Indexed operations for non-rectangular lattices applied to convolutional neural networks},author={Jacquemont, Mikael and Antiga, Luca and Vuillaume, Thomas and Silvestri, Giorgia and Benoit, Alexandre and Lambert, Patrick and Maurin, Gilles},booktitle={VISAPP 2019},year={2019}}
Studying Deep Convolutional Neural Networks With Hexagonal Lattices for Imaging Atmospheric Cherenkov Telescope Event Reconstruction
D Nieto Castaño, A Brill, Q Feng, and 4 more authors
In 36th International Cosmic Ray Conference (ICRC2019), 2019
2018
Deep Learning applied to the Cherenkov Telescope Array data analysis
M. Jacquemont, T. Vuillaume, A. Benoit, and 3 more authors